

Pushing the Performance Limits of the Lubricating Interfaces in Axial Piston Machines

Meike Ernst

Advisor:

Maha Fluid Power Research Center 1500 Kepner Dr. Lafayette, IN 47905

Shaping the component surfaces that form the lubricating interfaces *Shape is on the order of microns in height*

Table of Contents

- I. Three main lubricating interfaces
- II. Slipper-swash plate interface
- III. Cylinder block-valve plate interface
- IV. Piston-cylinder interface
- V. Conclusions

The Slipper

Measuring Slipper Wear

Cylinder Block-Valve Plate Overview Slipper-Swash Plate Piston-Cylinder Conclusions Trace 1 Trace 8 Trace 2 Trace 3 0 Trace 7 **Run-in profiles** 0 0 Trace 4 Height [µm] Trace 6 Trace 5 -2 -3 -4 0.2 0.4 0.6 0.8 0 Normalized Distance along Trace From the work of Ashkan Darbani (2019) 8

Maha Fluid Power

RESEARCH CENTER

PURDUE

Slipper Surface Shaping

From the work of Ashkan Darbani (2019)

Slipper Surface Shaping

From the work of Ashkan Darbani (2019)

PURDUE

Maha Fluid Power

Optimization Results (Cont.) Maha Fluid Power PURDUE RESEARCH CENTER **Slipper-Swash Plate Cylinder Block-Valve Plate Piston-Cylinder** Conclusions **Overview Power Loss Comparison** Optimized ■ Worn-in Commercial 100 bar, 600 rpm, 20% Displ. 🔳 Flat 100 bar, 3600 rpm, 100% Displ. 450 bar, 600 rpm, 20% Displ. 450 bar, 3600 rpm, 20% Displ. 450 bar, 600 rpm, 100% Displ. 450 bar, 3600 rpm, 100% Displ. 0 100 200 300 400 500 600 Power Loss [W]

From the work of Ashkan Darbani (2019)

From the work of Rene Chacon (2014)

 Results
 Maha Fluid Power Purpue

 Overview
 Slipper-Swash Plate
 Cylinder Block-Valve Plate
 Piston-Cylinder
 Conclusions

From the work of Ashley Wondergem (now Dr. Busquets) (2018)

Piston Surface Shaping to Increase Efficiency

From the work of Ashley Wondergem (now Dr. Busquets) (2018)

Piston Deformation during the High-Pressure Stroke

Overview	Slipper-Swash Plate	Cylinder Block-Valve Plate	Piston-Cylinder	Conclusions		
Conclusions			Maha Fluid Power PURDUE			

- The Maha Fluid Power Research Center in-house model:
 - $\,\circ\,\,$ State of the art multi-physics simulation tool
 - Today's presentation focused on its virtual prototyping capabilities
- Well-designed surface shaping can:
 - Drastically reduce power loss
 - Increase achievable load support for low-viscosity fluids
- Surface shaping is the FUTURE: Advances in manufacturing allow for more complex shaping

Questions?

References

- Busquets, A. (2018). An Investigation of Micro-Surface Shaping on the Piston/Cylinder Interface of Axial Piston Machines, PhD thesis, Purdue University.
- Chacon Portillo, R. (2014). Cylinder Block/Valve Plate Interface Performance Investigation through the Introduction of Micro-Surface Shaping, Masters thesis, Purdue University.
- Darbani, A. A. (2019). An Investigation in Slipper-Swashplate Interface of Axial Piston Machines, Masters thesis, Purdue University.
- Ernst, M. and Ivantysynova, M. (2018), 'Axial Piston Machine Cylinder Block Bore Surface Profile for High-Pressure Operating Conditions with Water as Working Fluid'. 2018 Global Fluid Power Society PhD Symposium (GFPS). Samara, 18-20 July.
- Ivantysyn, J., and Ivantysynova, M., 2003, Hydrostatic Pumps and
 - Motors, Tech Books International, New Delhi, pp. 134-141, Chap. 4.
- Ivantysynova, M., Garrett, R. A. & Frederickson, A. A. (2012), 'Positive Displacement Machine Piston with Wavy Surface Form'. Lasaar, R. (2003), Eine Untersuchung zur mikro- und makrogeometrischen Gestaltung der Kolben-/Zylinderbaugruppe von Schraegscheibenmaschinen, VDI Verlag GmbH, Duesseldorf. URL: http://www.sciencedirect.com/science/article/pii/S0257897205008807
- Lasaar, R. (2003), Eine Untersuchung zur mikro- und makrogeometrischen Gestaltung der Kolben-/Zylinderbaugruppe von Schraegscheibenmaschinen, VDI Verlag GmbH, Duesseldorf.
- Pelosi, M. (2012), An Investigation on the Fluid-Structure Interaction of Piston/Cylinder Interface, PhD thesis, Purdue University.
- Schenk, A. (2014). Predicting Lubrication Performance between the Slipper and Swashplate in Axial Piston Machines, PhD thesis, Purdue University.